
Invocations
Release

Jan 10, 2020

Contents

1 Roadmap 3

2 Contents 5
2.1 Changelog . 5

3 API/task docs 7
3.1 autodoc . 7
3.2 console . 8
3.3 docs . 8
3.4 packaging . 9
3.5 pytest . 11

Python Module Index 13

i

ii

Invocations, Release

Invocations is a collection of reusable Invoke tasks, task collections and helper functions. Originally sourced from the
Invoke project’s own project-management tasks file, they are now highly configurable and used across a number of
projects, with the intent to become a clearinghouse for implementing common best practices.

Currently implemented topics include (but are not limited to):

• management of Sphinx documentation trees

• Python project release lifecycles

• dependency vendoring

• running test suites (unit, integration, coverage-oriented, etc)

• console utilities such as confirmation prompts

and more.

Contents 1

http://pyinvoke.org

Invocations, Release

2 Contents

CHAPTER 1

Roadmap

While Invocations has been released with a major version number to signal adherence to semantic versioning, it’s
somewhat early in development and has not fully achieved its design vision yet.

We expect it to gain maturity in tandem with the adoption and development of Invoke post-1.x. It’s also highly likely
that Invocations will see a few major releases as its API (and those of its sister library, patchwork) matures.

3

https://fabric-patchwork.readthedocs.io

Invocations, Release

4 Chapter 1. Roadmap

CHAPTER 2

Contents

2.1 Changelog

• : Remove some apparently non-functional setup.py logic around conditionally requiring enum34; it was
never getting selected and thus breaking a couple modules that relied on it.

enum34 is now a hard requirement like the other semi-optional-but-not-really requirements.

• : checks.blacken had a typo regarding its folder selection argument; the CLI/function arg was folder
while the configuration value was folders (plural). It’s been made consistent: the CLI/function argument is
now folders.

• : Was missing a ‘hide output’ flag on a subprocess shell call, the result of which was mystery git branch names
appearing in the output of inv release and friends. Fixed now.

• : checks.blacken had a typo regarding its folder selection argument; the CLI/function arg was folder
while the configuration value was folders (plural). It’s been made consistent: the CLI/function argument is
now folders.

• : Was missing a ‘hide output’ flag on a subprocess shell call, the result of which was mystery git branch names
appearing in the output of inv release and friends. Fixed now.

• : Remove some apparently non-functional setup.py logic around conditionally requiring enum34; it was
never getting selected and thus breaking a couple modules that relied on it.

enum34 is now a hard requirement like the other semi-optional-but-not-really requirements.

• : checks.blacken had a typo regarding its folder selection argument; the CLI/function arg was folder
while the configuration value was folders (plural). It’s been made consistent: the CLI/function argument is
now folders.

• : Was missing a ‘hide output’ flag on a subprocess shell call, the result of which was mystery git branch names
appearing in the output of inv release and friends. Fixed now.

• : Remove some apparently non-functional setup.py logic around conditionally requiring enum34; it was
never getting selected and thus breaking a couple modules that relied on it.

enum34 is now a hard requirement like the other semi-optional-but-not-really requirements.

5

Invocations, Release

• : Remove some apparently non-functional setup.py logic around conditionally requiring enum34; it was
never getting selected and thus breaking a couple modules that relied on it.

enum34 is now a hard requirement like the other semi-optional-but-not-really requirements.

• : Add the checks module, containing checks.blacken which executes the black code formatter. Thanks
to Chris Rose.

• : Add ‘missing’ arguments to pytest.integration so its signature now largely matches pytest.test,
which it wraps.

• : Break out a generic form of the travis.sudo-coverage task into travis.sudo-run which
can be used for arbitrary commands run under the ssh/sudo capable user generated by travis.
make-sudouser/travis.make-sshable.

• : Add travis.blacken which wraps the new checks.blacken (in diff+check mode, for test output
useful for users who cannot themselves simply run black) in addition to performing Travis-oriented Python
version checks and pip installation.

This is necessary to remove boilerplate around the fact that black is not even visible to Python versions less
than 3.6.

• : Split out the body of the (sadly incomplete) packaging.release.all task into the better-named
packaging.release.prepare. (all continues to behave as it did, it just now calls prepare explicitly.)

• : Pre-history / code primarily for internal consumption

6 Chapter 2. Contents

https://github.com/ambv/black

CHAPTER 3

API/task docs

3.1 autodoc

Sphinx autodoc hooks for documenting Invoke-level objects such as tasks.

Unlike most of the rest of Invocations, this module isn’t for reuse in the “import and call functions” sense, but instead
acts as a Sphinx extension which allows Sphinx’s autodoc functionality to see and document Invoke tasks and similar
Invoke objects.

Note: This functionality is mostly useful for redistributable/reusable tasks which have been defined as importable
members of some Python package or module, as opposed to “local-only” tasks that live in a single project’s tasks.
py.

However, it will work for any tasks that Sphinx autodoc can import, so in a pinch you could for example tweak
sys.path in your Sphinx conf.py to get it loading up a “local” tasks file for import.

To use:

• Add "sphinx.ext.autodoc" and "invocations.autodoc" to your Sphinx conf.py‘s
extensions list.

• Use Sphinx autodoc’s automodule directive normally, aiming it at your tasks module(s), e.g. ..
automodule:: myproject.tasks in some .rst document of your choosing.

– As noted above, this only works for modules that are importable, like any other Sphinx autodoc use case.

– Unless you want to opt-in which module members get documented, use :members: or add "members"
to your conf.py‘s autodoc_default_flags.

– By default, only tasks with docstrings will be picked up, unless you also give the :undoc-members:
flag or add :undoc-members: / add "undoc-members" to autodoc_default_flags.

– Please see the autodoc docs for details on these settings and more!

• Build your docs, and you should see your tasks showing up as documented functions in the result.

7

http://www.sphinx-doc.org/en/master/ext/autodoc.html
http://www.sphinx-doc.org/en/master/ext/autodoc.html

Invocations, Release

3.2 console

Text console UI helpers and patterns, e.g. ‘Y/n’ prompts and the like.

invocations.console.confirm(question, assume_yes=True)
Ask user a yes/no question and return their response as a boolean.

question should be a simple, grammatically complete question such as “Do you wish to continue?”, and will
have a string similar to " [Y/n] " appended automatically. This function will not append a question mark
for you.

By default, when the user presses Enter without typing anything, “yes” is assumed. This can be changed by
specifying assume_yes=False.

Note: If the user does not supplies input that is (case-insensitively) equal to “y”, “yes”, “n” or “no”, they will
be re-prompted until they do.

Parameters

• question (str) – The question part of the prompt.

• assume_yes (bool) – Whether to assume the affirmative answer by default. Default
value: True.

Returns A bool.

3.3 docs

Tasks for managing Sphinx documentation trees.

invocations.docs.build(c, clean=False, browse=False, nitpick=False, opts=None, source=None,
target=None)

Build the project’s Sphinx docs.

invocations.docs.doctest(c)
Run Sphinx’ doctest builder.

This will act like a test run, displaying test results & exiting nonzero if all tests did not pass.

A temporary directory is used for the build target, as the only output is the text file which is automatically
printed.

invocations.docs.sites(c)
Build both doc sites w/ maxed nitpicking.

invocations.docs.tree(c)
Display documentation contents with the ‘tree’ program.

invocations.docs.watch_docs(c)
Watch both doc trees & rebuild them if files change.

This includes e.g. rebuilding the API docs if the source code changes; rebuilding the WWW docs if the
README changes; etc.

Reuses the configuration values packaging.package or tests.package (the former winning over the
latter if both defined) when determining which source directory to scan for API doc updates.

8 Chapter 3. API/task docs

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Invocations, Release

3.4 packaging

3.4.1 packaging.release

Python package release tasks.

This module assumes:

• you’re using semantic versioning for your releases

• you maintain a file called $package/_version.py containing normal version conventions
(__version_info__ tuple and __version__ string).

invocations.packaging.release.all_(c)
Catchall version-bump/tag/changelog/PyPI upload task.

invocations.packaging.release.build(c, sdist=True, wheel=False, directory=None,
python=None, clean=True)

Build sdist and/or wheel archives, optionally in a temp base directory.

All parameters save directory honor config settings of the same name, under the packaging tree. E.g. say
.configure({'packaging': {'wheel': True}}) to force building wheel archives by default.

Parameters

• sdist (bool) – Whether to build sdists/tgzs.

• wheel (bool) – Whether to build wheels (requires the wheel package from PyPI).

• directory (str) – Allows specifying a specific directory in which to perform builds
and dist creation. Useful when running as a subroutine from publish which sets up a
temporary directory.

Two subdirectories will be created within this directory: one for builds, and one for the dist
archives.

When None or another false-y value, the current working directory is used (and thus, local
dist/ and build/ subdirectories).

• python (str) – Which Python binary to use when invoking setup.py.

Defaults to just python.

If wheel=True, then this Python must have wheel installed in its default
site-packages (or similar) location.

• clean (bool) – Whether to clean out the local build/ folder before building.

invocations.packaging.release.prepare(c)
Edit changelog & version, git commit, and git tag, to set up for release.

invocations.packaging.release.publish(c, sdist=True, wheel=False, index=None, sign=False,
dry_run=False, directory=None, dual_wheels=False,
alt_python=None, check_desc=False)

Publish code to PyPI or index of choice.

All parameters save dry_run and directory honor config settings of the same name, under the
packaging tree. E.g. say .configure({'packaging': {'wheel': True}}) to force build-
ing wheel archives by default.

Parameters

• sdist (bool) – Whether to upload sdists/tgzs.

3.4. packaging 9

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Invocations, Release

• wheel (bool) – Whether to upload wheels (requires the wheel package from PyPI).

• index (str) – Custom upload index/repository name. See upload help for details.

• sign (bool) – Whether to sign the built archive(s) via GPG.

• dry_run (bool) – Skip actual publication step if True.

This also prevents cleanup of the temporary build/dist directories, so you can examine the
build artifacts.

• directory (str) – Base directory within which will live the dist/ and build/ direc-
tories.

Defaults to a temporary directory which is cleaned up after the run finishes.

• dual_wheels (bool) – When True, builds individual wheels for Python 2 and Python
3.

Useful for situations where you can’t build universal wheels, but still want to distribute for
both interpreter versions.

Requires that you have a useful python3 (or python2, if you’re on Python 3 already) bi-
nary in your $PATH. Also requires that this other python have the wheel package installed
in its site-packages; usually this will mean the global site-packages for that interpreter.

See also the alt_python argument.

• alt_python (str) – Path to the ‘alternate’ Python interpreter to use when
dual_wheels=True.

When None (the default) will be python3 or python2, depending on the currently active
interpreter.

• check_desc (bool) – Whether to run setup.py check -r -s (uses
readme_renderer) before trying to publish - catches long_description bugs. De-
fault: False.

invocations.packaging.release.status(c)
Print current release (version, changelog, tag, etc) status.

Doubles as a subroutine, returning the return values from its inner call to _converge (an (actions,
state) two-tuple of Lexicons).

invocations.packaging.release.upload(c, directory, index=None, sign=False, dry_run=False)
Upload (potentially also signing) all artifacts in directory.

Parameters

• index (str) – Custom upload index/repository name.

By default, uses whatever the invoked pip is configured to use. Modify your pypirc file
to add new named repositories.

• sign (bool) – Whether to sign the built archive(s) via GPG.

• dry_run (bool) – Skip actual publication step if True.

This also prevents cleanup of the temporary build/dist directories, so you can examine the
build artifacts.

3.4.2 packaging.vendorize

Tasks for importing external code into a vendor subdirectory.

10 Chapter 3. API/task docs

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool

Invocations, Release

invocations.packaging.vendorize.vendorize(c, distribution, version, vendor_dir, pack-
age=None, git_url=None, license=None)

Vendorize Python package distribution at version/SHA version.

Specify the vendor folder (e.g. <mypackage>/vendor) as vendor_dir.

For Crate/PyPI releases, package should be the name of the software entry on those sites, and version
should be a specific version number. E.g. vendorize('lexicon', '0.1.2').

For Git releases, package should be the name of the package folder within the checkout that needs to be
vendorized and version should be a Git identifier (branch, tag, SHA etc.) git_url must also be given,
something suitable for git clone <git_url>.

For SVN releases: xxx.

For packages where the distribution name is not the same as the package directory name, give
package='name'.

By default, no explicit license seeking is done – we assume the license info is in file headers or otherwise within
the Python package vendorized. This is not always true; specify license=/path/to/license/file to
trigger copying of a license into the vendored folder from the checkout/download (relative to its root.)

3.5 pytest

Pytest-using variant of testing.py. Will eventually replace the latter.

invocations.pytest.coverage(c, report=’term’, opts=’‘, tester=None)
Run pytest with coverage enabled.

Assumes the pytest-cov pytest plugin is installed.

Parameters

• report (str) – Coverage report style to use. If ‘html’, will also open in browser.

• opts (str) – Extra runtime opts to pass to pytest.

• tester – Specific test task object to invoke. If None (default), uses this module’s local
test.

invocations.pytest.integration(c, opts=None, pty=True, x=False, k=None, verbose=True,
color=True, capture=’sys’, module=None)

Run the integration test suite. May be slow!

See pytest.test for description of most arguments.

invocations.pytest.test(c, verbose=True, color=True, capture=’sys’, module=None, k=None,
x=False, opts=’‘, pty=True)

Run pytest with given options.

Parameters

• verbose (bool) – Whether to run tests in verbose mode.

• color (bool) – Whether to request colorized output (typically only works when
verbose=True.)

• capture (str) – What type of stdout/err capturing pytest should use. Defaults to sys
since pytest’s own default, fd, tends to trip up subprocesses trying to detect PTY status.
Can be set to no for no capturing / useful print-debugging / etc.

3.5. pytest 11

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

Invocations, Release

• module (str) – Select a specific test module to focus on, e.g. main to only run tests/
main.py. (Note that this is a specific idiom aside from the use of -o '-k pattern'.)
Default: None.

• k (str) – Convenience passthrough for pytest -k, i.e. test selection. Default: None.

• x (bool) – Convenience passthrough for pytest -x, i.e. fail-fast. Default: False.

• opts (str) – Extra runtime options to hand to pytest.

• pty (bool) – Whether to use a pty when executing pytest. Default: True.

12 Chapter 3. API/task docs

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool

Python Module Index

i
invocations.autodoc, 7
invocations.console, 8
invocations.docs, 8
invocations.packaging.release, 9
invocations.packaging.vendorize, 10
invocations.pytest, 11

13

Invocations, Release

14 Python Module Index

Index

A
all_() (in module invocations.packaging.release), 9

B
build() (in module invocations.docs), 8
build() (in module invocations.packaging.release), 9

C
confirm() (in module invocations.console), 8
coverage() (in module invocations.pytest), 11

D
doctest() (in module invocations.docs), 8

I
integration() (in module invocations.pytest), 11
invocations.autodoc (module), 7
invocations.console (module), 8
invocations.docs (module), 8
invocations.packaging.release (module), 9
invocations.packaging.vendorize (module), 10
invocations.pytest (module), 11

P
prepare() (in module invocations.packaging.release), 9
publish() (in module invocations.packaging.release), 9

S
sites() (in module invocations.docs), 8
status() (in module invocations.packaging.release), 10

T
test() (in module invocations.pytest), 11
tree() (in module invocations.docs), 8

U
upload() (in module invocations.packaging.release), 10

V
vendorize() (in module invocations.packaging.vendorize),

10

W
watch_docs() (in module invocations.docs), 8

15

	Roadmap
	Contents
	Changelog

	API/task docs
	autodoc
	console
	docs
	packaging
	pytest

	Python Module Index

